

Lecture 26:
Complexity Theory

CS103CS103

Winter 2025Winter 2025

Part 2 of 2

Recap from Last Time

The Complexity Class P
● The complexity class P (polynomial

time) is defined as
 P = { L | There is a polynomial-time
 decider for L }

● Intuitively, P contains all decision
problems that can be solved efficiently.

● This is like class R, except with
“efficiently” tacked onto the end.

The Complexity Class NP
● The complexity class NP (nondeterministic

polynomial time) contains all problems that
can be verified in polynomial time.

● Formally:
 NP = { L | There is a polynomial-time
 verifier for L }

● Intuitively, NP is the set of problems where
“yes” answers can be checked efficiently.

● This is like the class RE, but with “efficiently”
tacked on to the definition.

The Biggest Unsolved Problem in
Theoretical Computer Science:

P ≟ NP

 P = { L | there is a polynomial-time
 decider for L }

 NP = { L | there is a polynomial-time
verifier for L }

 R = { L | there is a polynomial-time
 decider for L }

 RE = { L | there is a polynomial-time
verifier for L }

We know that R ≠ RE.

So does that mean P ≠ NP?

A Problem
● The R and RE languages correspond to

problems that can be decided and verified,
period, without any time bounds.

● To reason about what's in R and what's in
RE, we used two key techniques:
● Universality: TMs can simulate other TMs.
● Self-Reference: TMs can get their own source

code.
● Why can't we just do that for P and NP?

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

New Stuff!

A Challenge

 NP PREG

Problems in NP vary widely in their
difficulty, even if P = NP.

How can we rank the relative difficulties
of problems?

Reducibility

Maximum Matching
● Given an undirected graph G, a matching in G is a

set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching
● Given an undirected graph G, a matching in G is a

set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching
● Given an undirected graph G, a matching in G is a

set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

Maximum Matching
● Given an undirected graph G, a matching in G is a

set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

Maximum Matching
● Jack Edmonds' paper “Paths, Trees, and

Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.
● He’s the guy from last time with the quote

about “better than decidable.”
● Using this fact, what other problems can

we solve?

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

bool canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

Which of the following is the most reasonable conclusion to draw,
given the existence of the above function?

A. Solving domino tiling on a 2D grid can’t be “harder”
than solving maximum matching.

B. Solving maximum matching can’t be “harder”
than solving domino tiling on a 2D grid.

C. Both A and B.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,

because if we can solve maximum
matching efficiently, we can solve domino

tiling efficiently.

Another Example

Satisfiability
● A propositional logic formula φ is called

satisfiable if there is some assignment to its
variables that makes it evaluate to true.

● Which of the following formulas are satisfiable?
p ∧ q

p ∧ ¬p
p → (q ∧ ¬q)

● An assignment of true and false to the variables
of φ that makes it evaluate to true is called a
satisfying assignment.

SAT
● The boolean satisfiability problem (SAT) is the

following:
Given a propositional logic
formula φ, is φ satisfiable?

● Formally:
SAT = { ⟨φ⟩ | φ is a satisfiable PL formula }

● Finding good algorithms for SAT is an active area of
research for reasons we’ll discuss later today.

● We have some pretty decent algorithms for solving
SAT reasonably quickly most of the time.

● Given this, what other problems can we solve?

Lights Out
● You’re given a ring of

pushbuttons. Each
pushbutton has a light
that is either ON or OFF.

● If you push a button, it
toggles the state of the
two adjacent lights in the
ring. (Lights that are ON
turn OFF and vice-versa.)

● Question: Given an
initial configuration of
lights, can you turn all
the lights off?

Lights Out
● You’re given a ring of

pushbuttons. Each
pushbutton has a light
that is either ON or OFF.

● If you push a button, it
toggles the state of the
two adjacent lights in the
ring. (Lights that are ON
turn OFF and vice-versa.)

● Question: Given an
initial configuration of
lights, can you turn all
the lights off?

Lights Out
● You’re given a ring of

pushbuttons. Each
pushbutton has a light
that is either ON or OFF.

● If you push a button, it
toggles the state of the
two adjacent lights in the
ring. (Lights that are ON
turn OFF and vice-versa.)

● Question: Given an
initial configuration of
lights, can you turn all
the lights off?

Lights Out
● You’re given a ring of

pushbuttons. Each
pushbutton has a light
that is either ON or OFF.

● If you push a button, it
toggles the state of the
two adjacent lights in the
ring. (Lights that are ON
turn OFF and vice-versa.)

● Question: Given an
initial configuration of
lights, can you turn all
the lights off?

Lights Out
● You’re given a ring of

pushbuttons. Each
pushbutton has a light
that is either ON or OFF.

● If you push a button, it
toggles the state of the
two adjacent lights in the
ring. (Lights that are ON
turn OFF and vice-versa.)

● Question: Given an
initial configuration of
lights, can you turn all
the lights off?

Lights Out
● You’re given a ring of

pushbuttons. Each
pushbutton has a light
that is either ON or OFF.

● If you push a button, it
toggles the state of the
two adjacent lights in the
ring. (Lights that are ON
turn OFF and vice-versa.)

● Question: Given an
initial configuration of
lights, can you turn all
the lights off?

Lights Out
● You’re given a ring of

pushbuttons. Each
pushbutton has a light
that is either ON or OFF.

● If you push a button, it
toggles the state of the
two adjacent lights in the
ring. (Lights that are ON
turn OFF and vice-versa.)

● Question: Given an
initial configuration of
lights, can you turn all
the lights off?

In which of these rings can you
turn off all the lights?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Solving Lights-Out With a SAT Solver

a c
b

dh

g e
f

Observation 1: We never need
to press the same button twice.

Observation 4: A light that is
initially off stays off when an

even number of adjacent lights
are pressed.

Observation 5: A light that is
initially on ends off when an

odd number of adjacent lights
are pressed.

Observation 2: Button press
order doesn’t matter.

Observation 3: Our
propositional formula will have

one variable per button,
indicating whether we press it.

a c
b

dh

g e
f

Write a formula in propositional logic
that says “an even number of the

variables a and c are true.”

Answer at
https://cs103.stanford.edu/pollev

Observation 1: We never need
to press the same button twice.

Observation 4: A light that is
initially off stays off when an

even number of adjacent lights
are pressed.

Observation 5: A light that is
initially on ends off when an

odd number of adjacent lights
are pressed.

Observation 2: Button press
order doesn’t matter.

Observation 3: Our
propositional formula will have

one variable per button,
indicating whether we press it.

https://cs103.stanford.edu/pollev

a c
b

dh

g e
f

 ¬(h ↔ b) ∧
 ¬(a ↔ c) ∧
 ¬(b ↔ d) ∧
 ¬(c ↔ e) ∧
 ¬(d ↔ f) ∧
 ¬(e ↔ g) ∧
 ¬(f ↔ h) ∧
 ¬(a ↔ g)

Observation 1: We never need
to press the same button twice.

Observation 4: A light that is
initially off stays off when an

even number of adjacent lights
are pressed.

Observation 5: A light that is
initially on ends off when an

odd number of adjacent lights
are pressed.

Observation 2: Button press
order doesn’t matter.

Observation 3: Our
propositional formula will have

one variable per button,
indicating whether we press it.

 ¬(h ↔ b) ∧
 ¬(a ↔ c) ∧
 ¬(b ↔ d) ∧
 ¬(c ↔ e) ∧
 ¬(d ↔ f) ∧
 ¬(e ↔ g) ∧
 ¬(f ↔ h) ∧
 ¬(a ↔ g)

Make a and c true.
Make b, d, e, f, g, and h false.

 ¬(h ↔ b) ∧
 ¬(a ↔ c) ∧
 ¬(b ↔ d) ∧
 ¬(c ↔ e) ∧
 ¬(d ↔ f) ∧
 ¬(e ↔ g) ∧
 ¬(f ↔ h) ∧
 ¬(a ↔ g)

Make a and c true.
Make b, d, e, f, g, and h false.

 ¬(h ↔ b) ∧
 ¬(a ↔ c) ∧
 ¬(b ↔ d) ∧
 ¬(c ↔ e) ∧
 ¬(d ↔ f) ∧
 ¬(e ↔ g) ∧
 ¬(f ↔ h) ∧
 ¬(a ↔ g)

Make a and c true.
Make b, d, e, f, g, and h false.

a c
b

dh

g e
f

a
b

h

 ¬(h ↔ b) ∧
 ¬(a ↔ c) ∧
 ¬(b ↔ d) ∧
 ¬(c ↔ e) ∧
 ¬(d ↔ f) ∧
 ¬(e ↔ g) ∧
 ¬(f ↔ h) ∧
 ¬(a ↔ g)

Make a and c true.
Make b, d, e, f, g, and h false.

b

h

c

d

g e
f

b

d

a
b

h

 ¬(h ↔ b) ∧
 ¬(a ↔ c) ∧
 ¬(b ↔ d) ∧
 ¬(c ↔ e) ∧
 ¬(d ↔ f) ∧
 ¬(e ↔ g) ∧
 ¬(f ↔ h) ∧
 ¬(a ↔ g)

Make a and c true.
Make b, d, e, f, g, and h false.

dh

c

g e
f

In Pseudocode

bool canTurnLightsOff(LightRing r) {

 return isSatisfiable(ringToFormula(r));

}

Intuition:

Solving Lights Out can’t be “harder”
than solving SAT because if we can solve
SAT efficiently, we can solve Lights Out

efficiently.

bool canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

bool canTurnLightsOff(LightRing r) {

 return isSatisfiable(ringToFormula(r));

}

Intuition:

Problem A can't be “harder” than problem
B, because solving problem B lets us solve

problem A.

bool solveProblemA(string input) {
 return solveProblemB(translate(input));
}

bool solveProblemA(string input) {
 return solveProblemB(translate(input));
}

● If A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A ≤p B.
● We say that A is polynomial-time

reducible to B.

* Assuming that translate
* runs in polynomial time.

bool solveProblemA(string input) {
 return solveProblemB(translate(input));
}

● This is a powerful general problem-solving
technique. You’ll see it a lot in CS161.

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

P

Polynomial-Time Reductions

Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

This ≤ₚ relation lets us rank the relative
difficulties of problems in P and NP.

What else can we do with it?

Time-Out for Announcements!

Please evaluate this course on Axess.

Your feedback makes a difference.

Final Exam Logistics
● Our final exam is on Wednesday, March 19th

from 3:30 – 6:30 PM.
● Seating assignments will be online soon; we’ll make

an announcement when they’re ready.
● The final exam is cumulative, covering topics

from PS0 – PS9 and L00 – L26. The format is
similar to that of the midterms, with a mix of
short-answer questions and formal written
proofs.

● Like the midterms, it’s closed-book, closed-
computer, and limited-note. You can bring one
double-sided 8.5” × 11” notes sheet with you.

Preparing for the Exam
● Iris and Stanley will be holding a review session

Monday, March 17, 3-4 PM in CoDa E160!
● We’ve also released EPP3, a collection of five

practice final exams you can use to prepare.
● We’ve also released the Cumulative Practice

Problems list, a gigantic searchable database of
problems you can use to brush up on whatever
topics you need the most practice with.

● As always, keep the TAs in the loop when
studying! That’s what we’re here for.

Back to CS103!

NP-Hardness and NP-Completeness

An Analogy: Running Really Fast

For people A and B, we say A ≤ᵣ B if
A’s top running speed is at most B’s top speed.
(Intuitively: B can run at least as fast as A.)

We say that person P is CS103-fast if
∀A ∈ CS103. A ≤ᵣ P.

(How fast are you if you’re CS103-fast?)

We say that person P is CS103-complete if
P ∈ CS103 and P is CS103-fast.

(How fast are you if you’re CS103-complete?)

CS103-fastCS103-complete

Usain
Bolt

Paula
Radcliffe

Fastest
runner in

CS103

Tied for
fastest in

CS103

CS103

For languages A and B, we say A ≤ₚ B if
A reduces to B in polynomial time.

(Intuitively: B is at least as hard as A.)

We say that a language L is NP-hard if
∀A ∈ NP. A ≤ₚ L.

(How hard is a problem that’s NP-hard?)

We say that a language L is NP-complete if
L ∈ NP and L is NP-hard.

(How hard is a problem that’s NP-complete?)

NP NP-hardNP-complete

LD

ATM
Hardest

problem in
NP

Tied for
hardest in

NP

P

Intuition: The NP-complete problems are
the hardest problems in NP.

If we can determine how hard those
problems are, it would tell us a lot about

the P ≟ NP question.

The Tantalizing Truth
Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■Intuition: This means the hardest

problems in NP aren’t actually that
hard. We can solve them in

polynomial time. So that means we
can solve all problems in NP in

polynomial time.

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth
Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

 NP
P

NPC

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤ₚ L. Since L ∈ P and A ≤ₚ L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth
Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

Intuition: This means the hardest
problems in NP are so hard that

they can’t be solved in polynomial
time. So the hardest problems in NP

aren’t in P, meaning P ≠ NP.

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

How do we even know NP-complete
problems exist in the first place?

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to
make a polynomial-time verifier for it. Key idea:
have the certificate be a satisfying assignment.

To show that SAT is NP-hard, given a
polymomial-time verifier V for an arbitrary NP
language L, for any string w you can construct a
polynomially-sized formula φ(w) that says “there
is a certificate c where V accepts ⟨w, c⟩.” This
formula is satisfiable if and only if w ∈ L, so
deciding whether the formula is satisfiable
decides whether w is in L. ■

Proof: Take CS154!

Why All This Matters
● Resolving P ≟ NP is equivalent to just

figuring out how hard SAT is.
SAT ∈ P ↔ P = NP

● We've turned a huge, abstract, theoretical
problem about solving problems versus
checking solutions into the concrete task of
seeing how hard one problem is.

● You can get a sense for how little we know
about algorithms and computation given
that we can't yet answer this question!

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most

probable evolutionary tree that would give rise to those genomes?
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, finite, two-player
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can
perform those tasks in parallel, can you complete all the jobs within
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, find the simplest way of
modeling the statistical patterns in that data. (Bayesian network
inference problem)

● Medicine: Given a group of people who need kidneys and a group of
kidney donors, find the maximum number of people who can receive
transplants. (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, find the
optimal way to assign those tasks so that they complete as soon as
possible. (Processor scheduling problem)

Why All This Matters
● You will almost certainly encounter NP-hard

problems in practice – they're everywhere!
● If a problem is NP-hard, then there is no known

algorithm for that problem that
● is efficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard
problem, you will either need to settle for an
approximate answer, an answer that's likely but not
necessarily right, or have to work on really small
inputs.

Next Time
● Why All This Matters
● Where to Go from Here
● A Final “Your Questions”
● Parting Words!

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 105

