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Recap from Last Time



  

The Complexity Class P
● The complexity class P (polynomial 

time) is defined as
     P = { L | There is a polynomial-time 
                   decider for L }

● Intuitively, P contains all decision 
problems that can be solved efficiently.

● This is like class R, except with 
“efficiently” tacked onto the end.



  

The Complexity Class NP
● The complexity class NP (nondeterministic 

polynomial time) contains all problems that 
can be verified in polynomial time.

● Formally:
      NP = { L | There is a polynomial-time 
                        verifier for L }

● Intuitively, NP is the set of problems where 
“yes” answers can be checked efficiently.

● This is like the class RE, but with “efficiently” 
tacked on to the definition.



  

The Biggest Unsolved Problem in
Theoretical Computer Science:

P  ≟ NP



  

  P =   { L | there is a polynomial-time
 decider for L }

   NP =   { L | there is a polynomial-time
verifier for L }



  

  R =   { L | there is a polynomial-time
 decider for L }

   RE =   { L | there is a polynomial-time
verifier for L }



  

We know that R ≠ RE.

So does that mean P ≠ NP?



  

A Problem
● The R and RE languages correspond to 

problems that can be decided and verified, 
period, without any time bounds.

● To reason about what's in R and what's in 
RE, we used two key techniques:
● Universality: TMs can simulate other TMs.
● Self-Reference: TMs can get their own source 

code.
● Why can't we just do that for P and NP?



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



New Stuff!



A Challenge



  

      NP        PREG

Problems in NP vary widely in their 
difficulty, even if P = NP.

 

How can we rank the relative difficulties 
of problems?



  

Reducibility



  

Maximum Matching
● Given an undirected graph G, a matching in G is a 

set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.
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Maximum Matching
● Given an undirected graph G, a matching in G is a 

set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A matching, but 
not a maximum 

matching.



  

Maximum Matching
● Given an undirected graph G, a matching in G is a 

set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A maximum 
matching.



  

Maximum Matching
● Jack Edmonds' paper “Paths, Trees, and 

Flowers” gives a polynomial-time 
algorithm for finding maximum 
matchings.
● He’s the guy from last time with the quote 

about “better than decidable.”
● Using this fact, what other problems can 

we solve?



  

Domino Tiling
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Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

bool canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

Which of the following is the most reasonable conclusion to draw,
given the existence of the above function?

A. Solving domino tiling on a 2D grid can’t be “harder”
than solving maximum matching.

B. Solving maximum matching can’t be “harder”
than solving domino tiling on a 2D grid.

C. Both A and B.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Intuition:

Tiling a grid with dominoes can't be 
“harder” than solving maximum matching, 

because if we can solve maximum 
matching efficiently, we can solve domino 

tiling efficiently.



  

Another Example



  

Satisfiability
● A propositional logic formula φ is called 

satisfiable if there is some assignment to its 
variables that makes it evaluate to true.

● Which of the following formulas are satisfiable?
p ∧ q

p ∧ ¬p
p → (q ∧ ¬q)

● An assignment of true and false to the variables 
of φ that makes it evaluate to true is called a 
satisfying assignment.



  

SAT
● The boolean satisfiability problem (SAT) is the 

following:
Given a propositional logic
formula φ, is φ satisfiable?

● Formally:
SAT = { ⟨φ⟩ | φ is a satisfiable PL formula }

● Finding good algorithms for SAT is an active area of 
research for reasons we’ll discuss later today.

● We have some pretty decent algorithms for solving 
SAT reasonably quickly most of the time.

● Given this, what other problems can we solve?



  

Lights Out
● You’re given a ring of 

pushbuttons. Each 
pushbutton has a light 
that is either ON or OFF.

● If you push a button, it 
toggles the state of the 
two adjacent lights in the 
ring. (Lights that are ON 
turn OFF and vice-versa.)

● Question: Given an 
initial configuration of 
lights, can you turn all 
the lights off?
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Lights Out
● You’re given a ring of 

pushbuttons. Each 
pushbutton has a light 
that is either ON or OFF.

● If you push a button, it 
toggles the state of the 
two adjacent lights in the 
ring. (Lights that are ON 
turn OFF and vice-versa.)

● Question: Given an 
initial configuration of 
lights, can you turn all 
the lights off?



  

In which of these rings can you
turn off all the lights?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  



  



  



  



  



  

Solving Lights-Out With a SAT Solver



  



  

a c
b

dh

g e
f

Observation 1: We never need 
to press the same button twice.

Observation 4: A light that is 
initially off stays off when an 

even number of adjacent lights 
are pressed.

Observation 5: A light that is 
initially on ends off when an

odd number of adjacent lights 
are pressed.

Observation 2: Button press 
order doesn’t matter.

Observation 3: Our 
propositional formula will have 

one variable per button, 
indicating whether we press it.



  

a c
b

dh

g e
f

Write a formula in propositional logic
that says “an even number of the

variables a and c are true.”

Answer at
https://cs103.stanford.edu/pollev

Observation 1: We never need 
to press the same button twice.

Observation 4: A light that is 
initially off stays off when an 

even number of adjacent lights 
are pressed.

Observation 5: A light that is 
initially on ends off when an

odd number of adjacent lights 
are pressed.

Observation 2: Button press 
order doesn’t matter.

Observation 3: Our 
propositional formula will have 

one variable per button, 
indicating whether we press it.

https://cs103.stanford.edu/pollev


  

a c
b

dh

g e
f

  ¬(h ↔ b) ∧
  ¬(a ↔ c) ∧
  ¬(b ↔ d) ∧
  ¬(c ↔ e) ∧
  ¬(d ↔ f) ∧
  ¬(e ↔ g) ∧
  ¬(f ↔ h) ∧
  ¬(a ↔ g) 

Observation 1: We never need 
to press the same button twice.

Observation 4: A light that is 
initially off stays off when an 

even number of adjacent lights 
are pressed.

Observation 5: A light that is 
initially on ends off when an

odd number of adjacent lights 
are pressed.

Observation 2: Button press 
order doesn’t matter.

Observation 3: Our 
propositional formula will have 

one variable per button, 
indicating whether we press it.



  

  ¬(h ↔ b) ∧
  ¬(a ↔ c) ∧
  ¬(b ↔ d) ∧
  ¬(c ↔ e) ∧
  ¬(d ↔ f) ∧
  ¬(e ↔ g) ∧
  ¬(f ↔ h) ∧
  ¬(a ↔ g) 

Make a and c true.
Make b, d, e, f, g, and h false.



  

  ¬(h ↔ b) ∧
  ¬(a ↔ c) ∧
  ¬(b ↔ d) ∧
  ¬(c ↔ e) ∧
  ¬(d ↔ f) ∧
  ¬(e ↔ g) ∧
  ¬(f ↔ h) ∧
  ¬(a ↔ g) 

Make a and c true.
Make b, d, e, f, g, and h false.



  

  ¬(h ↔ b) ∧
  ¬(a ↔ c) ∧
  ¬(b ↔ d) ∧
  ¬(c ↔ e) ∧
  ¬(d ↔ f) ∧
  ¬(e ↔ g) ∧
  ¬(f ↔ h) ∧
  ¬(a ↔ g) 

Make a and c true.
Make b, d, e, f, g, and h false.

a c
b

dh

g e
f



  

a
b

h

  ¬(h ↔ b) ∧
  ¬(a ↔ c) ∧
  ¬(b ↔ d) ∧
  ¬(c ↔ e) ∧
  ¬(d ↔ f) ∧
  ¬(e ↔ g) ∧
  ¬(f ↔ h) ∧
  ¬(a ↔ g) 

Make a and c true.
Make b, d, e, f, g, and h false.

b

h

c

d

g e
f



  

b

d

a
b

h

  ¬(h ↔ b) ∧
  ¬(a ↔ c) ∧
  ¬(b ↔ d) ∧
  ¬(c ↔ e) ∧
  ¬(d ↔ f) ∧
  ¬(e ↔ g) ∧
  ¬(f ↔ h) ∧
  ¬(a ↔ g) 

Make a and c true.
Make b, d, e, f, g, and h false.

dh

c

g e
f



  

In Pseudocode

bool canTurnLightsOff(LightRing r) {

  return isSatisfiable(ringToFormula(r));

}



  

Intuition:

Solving Lights Out can’t be “harder”
than solving SAT because if we can solve 
SAT efficiently, we can solve Lights Out 

efficiently.



  

bool canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

bool canTurnLightsOff(LightRing r) {

  return isSatisfiable(ringToFormula(r));

}



  

Intuition:

Problem A can't be “harder” than problem 
B, because solving problem B lets us solve 

problem A.

bool solveProblemA(string input) {
    return solveProblemB(translate(input));
}



  

bool solveProblemA(string input) {
    return solveProblemB(translate(input));
}

● If A and B are problems where it's 
possible to solve problem A using the 
strategy shown above*, we write

A ≤p B. 
● We say that A is polynomial-time 

reducible to B.

* Assuming that translate
* runs in polynomial time.



bool solveProblemA(string input) {
    return solveProblemB(translate(input));
}

● This is a powerful general problem-solving
technique. You’ll see it a lot in CS161.



  

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions
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Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



This ≤ₚ relation lets us rank the relative 
difficulties of problems in P and NP.

What else can we do with it?



Time-Out for Announcements!



Please evaluate this course on Axess.

Your feedback makes a difference.



  

Final Exam Logistics
● Our final exam is on Wednesday, March 19th 

from 3:30 – 6:30 PM.
● Seating assignments will be online soon; we’ll make 

an announcement when they’re ready.
● The final exam is cumulative, covering topics 

from PS0 – PS9 and L00 – L26. The format is 
similar to that of the midterms, with a mix of 
short-answer questions and formal written 
proofs.

● Like the midterms, it’s closed-book, closed-
computer, and limited-note. You can bring one 
double-sided 8.5” × 11” notes sheet with you.



  

Preparing for the Exam
● Iris and Stanley will be holding a review session 

Monday, March 17, 3-4 PM in CoDa E160!
● We’ve also released EPP3, a collection of five 

practice final exams you can use to prepare.
● We’ve also released the Cumulative Practice 

Problems list, a gigantic searchable database of 
problems you can use to brush up on whatever 
topics you need the most practice with.

● As always, keep the TAs in the loop when 
studying! That’s what we’re here for.



  

Back to CS103!



  

NP-Hardness and NP-Completeness



  

An Analogy: Running Really Fast



  

For people A and B, we say A ≤ᵣ B if
A’s top running speed is at most B’s top speed.
(Intuitively: B can run at least as fast as A.)

 

We say that person P is CS103-fast if
∀A ∈ CS103. A ≤ᵣ P.

(How fast are you if you’re CS103-fast?)
 

We say that person P is CS103-complete if
P ∈ CS103 and P is CS103-fast.

(How fast are you if you’re CS103-complete?)

CS103-fastCS103-complete

Usain 
Bolt

Paula
Radcliffe

Fastest 
runner in 

CS103

Tied for 
fastest in 

CS103

CS103



  

For languages A and B, we say A ≤ₚ B if
A reduces to B in polynomial time.

(Intuitively: B is at least as hard as A.)
 

We say that a language L is NP-hard if
∀A ∈ NP. A ≤ₚ L.

(How hard is a problem that’s NP-hard?)
 

We say that a language L is NP-complete if
L ∈ NP and L is NP-hard.

(How hard is a problem that’s NP-complete?)

NP NP-hardNP-complete

LD

ATM
Hardest 

problem in 
NP

Tied for 
hardest in 

NP

P



  

Intuition: The NP-complete problems are 
the hardest problems in NP.

 

If we can determine how hard those 
problems are, it would tell us a lot about 

the P  ≟ NP question.



  

The Tantalizing Truth
Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■Intuition: This means the hardest 

problems in NP aren’t actually that 
hard. We can solve them in 

polynomial time. So that means we 
can solve all problems in NP in 

polynomial time.
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The Tantalizing Truth

     P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤ₚ L. Since L ∈ P and A ≤ₚ L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■



  

The Tantalizing Truth
Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

Intuition: This means the hardest 
problems in NP are so hard that 

they can’t be solved in polynomial 
time. So the hardest problems in NP 

aren’t in P, meaning P ≠ NP.



  

The Tantalizing Truth

      NP

P 
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■



  

How do we even know NP-complete
problems exist in the first place?



  

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to 
make a polynomial-time verifier for it. Key idea: 
have the certificate be a satisfying assignment.

To show that SAT is NP-hard, given a 
polymomial-time verifier V for an arbitrary NP 
language L, for any string w you can construct a 
polynomially-sized formula φ(w) that says “there 
is a certificate c where V accepts ⟨w, c⟩.” This 
formula is satisfiable if and only if w ∈ L, so 
deciding whether the formula is satisfiable 
decides whether w is in L. ■

Proof: Take CS154!



  

Why All This Matters
● Resolving P   ≟ NP is equivalent to just 

figuring out how hard SAT is.
SAT ∈ P    ↔    P = NP

● We've turned a huge, abstract, theoretical 
problem about solving problems versus 
checking solutions into the concrete task of 
seeing how hard one problem is.

● You can get a sense for how little we know 
about algorithms and computation given 
that we can't yet answer this question!



  

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most 

probable evolutionary tree that would give rise to those genomes? 
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, finite, two-player 
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can 
perform those tasks in parallel, can you complete all the jobs within 
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, find the simplest way of 
modeling the statistical patterns in that data. (Bayesian network 
inference problem)

● Medicine: Given a group of people who need kidneys and a group of 
kidney donors, find the maximum number of people who can receive 
transplants. (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, find the 
optimal way to assign those tasks so that they complete as soon as 
possible. (Processor scheduling problem)



  

Why All This Matters
● You will almost certainly encounter NP-hard 

problems in practice – they're everywhere!
● If a problem is NP-hard, then there is no known 

algorithm for that problem that
● is efficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard 
problem, you will either need to settle for an 
approximate answer, an answer that's likely but not 
necessarily right, or have to work on really small 
inputs.



  

Next Time
● Why All This Matters
● Where to Go from Here
● A Final “Your Questions”
● Parting Words!
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